Microstructure and Mechanical properties of Multipass Friction Stir Processed Aluminum Silicon Carbide Metal Matrix

نویسنده

  • V V Murali
چکیده

Abstrct :In this study, SiC particles were incorporated by using Friction Stir Processing (FSP) into the 6351 aluminium alloy to form particulate composite materials. Sampels were subjected to constant rotational and traverse speeds of the FSP tool with and without SiC reinforcements. Microstructural observations were carried out by employing optical microscopy of the modifiedsurfaces. Mechanical properties were evaluated by tensile test on UTM. For the 100% overlapping, No.of passes caused grain modification in the processed zone. The tensile test results indicate an improvement of strength and Microhardness for Single Pass FSP samples and a reduction in the strength of FSP samples with increasing the No.of passes due to the dissolution of the hardening precipitates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Friction Stir Process Parameters on Microstructure and Mechanical properties of Aluminum Powder Metallurgy Parts

The effects of friction stir processing (FSP) on the microstructure and mechanical properties of aluminum powder metallurgy (PM) parts was investigated. PM parts were then subjected to FSP at advancing speeds (v) of 40-200 mm/min and tool rotational speeds (ω) of 800-1600 rpm. Microhardness (HV) and tensile tests at room temperature were used to evaluate the mechanical properties of the frictio...

متن کامل

Experimental Investigations on Microstructural and Mechanical Behavior of Friction Stir Welded Aluminum Matrix Composite

The welding of materials by applying Friction Stir Welding technique is a new solid-state joining technique. The main advantage of this method compared to the traditional joining process is that it minimizes problem-related to metal resolidification as the method incorporates no melting phase. In this experimental work, the effect of friction stir welding (FSW) technique on the microstructu...

متن کامل

Evaluation of hardness and wear resistance of nano-sized titanium-carbide-reinforced commercially cast aluminum alloy matrices

Production of aluminum matrix composites is widespread because these material provide enhanced mechanical properties compared to aluminum. One the most important parameters of metal matrix composite production is uniform distribution of reinforcing nanoparticles in matrices using the stir-casting method. Second is ensuring high wettability, which is determined by evaluating the properties of ma...

متن کامل

Study on tool wear and surface roughness in end milling of particulate aluminum metal matrix composite: Application of response surface methodology

Metal matrix composites have been widely used in industries, especially aerospace industries, due to their excellent engineering properties. However, it is difficult to machine them because of the hardness and abrasive nature of reinforcement elements like silicon carbide particles (SiCp).In the present study, an attempt has been made to investigate the influence of spindle speed (N), feed rate...

متن کامل

Effect of Varying Silicon Carbide Particulate on the Mechanical Properties of Aluminium Based Alloy Automobile Brake Disc Component

In the current study, effect of varying Silicon Carbide particulate on the mechanical properties of Aluminium based alloy automobile brake disc component was investigated. The result of experimental investigation on mechanical properties of Silicon Carbide particle reinforced Aluminium Matrix was achieved for composite brake disc using universal tensile test machine, Rockwell hardness testing m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015